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Abstract

We introduce loss aversion into a model of conspicuous consumption in networks. Agents

allocate heterogeneous incomes between a conventional good and a status good. They interact

over a connected network and compare their status consumption to their neighbors’ average

consumption. We find that aversion to lying below the social reference point has a profound

impact. If loss aversion is large relative to income heterogeneity, a continuum of conformist

Nash equilibria emerges. Agents have the same status consumption, despite differences in

incomes and network positions, and the equilibrium is indeterminate. Otherwise, there is a

unique Nash equilibrium and status consumption depends on the interplay between network

positions and incomes. Our analysis extends to homothetic and heterogeneous preferences.
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1 Introduction

The pursuit of social status appears to be a main determinant of consumption, in particular

for visible goods such as clothing, phones, and cars. Following Veblen (1899), a vast literature

has documented the importance of conspicuous consumption (Charles et al. (2009), Heffetz

(2011), Kuhn et al. (2011), Bertrand and Morse (2016)). The empirical literature provides

insights into its social and psychological dimensions. Socially, status related comparisons are

deeply rooted in the structure of society. People tend to have distinct reference groups, which

may encompass family, friends, and colleagues. Our consumption patterns are often shaped

by the standards set within our reference group, serving as a benchmark against which we

evaluate our own consumption choices (Clark and Oswald (1998), Neumark and Postlewaite

(1998), Luttmer (2005), Clark and Senik (2010)). And this tendency to depart from com-

parisons to the society at large seems amplified by the advent of social media (Bazaarvoice

(2021)). Psychologically, individuals seem to attach more importance to relative depriva-

tion rather than relative abundance, in comparisons to these reference points (Drechsel-Grau

and Schmid (2014), Bertrand and Morse (2016)). In other words, the cognitive bias of loss

aversion, which affects many aspects of decision-making (Kahneman and Tversky (1979),

Tversky and Kahneman (1992), Loewenstein et al. (1989), Ferrer-i Carbonell (2005), Brown

et al. (forthcoming)), also affects conspicuous consumption. The combined effects of loss

aversion and network interactions have been largely overlooked, however, by the literature

on conspicuous consumption.

Our aim is to address this research gap. In this study, we provide the first analysis of

the impact of loss aversion on conspicuous consumption within a network context. We study

how consumption behavior is shaped by the interplay between social networks of status com-

parisons and the psychological aversion to lying below a reference point. We find that a

main consequence of loss aversion is to give rise, under some conditions, to a continuum of

conformist Nash equilibria, wherein heterogeneous individuals all consume exactly the same

level of status good. This emergence of global conformism is surprising at first glance, since

individuals do not have conformist preferences and may have different incomes and network

positions. What happens is that loss averse individuals are extra motivated not to consume
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less than their network neighbors. We show that when the comparison network is connected

and when loss aversion is large relative to income heterogeneity, the interplay of these local

motives gives rise to global conformism. These conformist equilibria are indeterminate, and

the absence of a selection mechanism paves the way for what is commonly referred to as

“animal spirits”. Any governing institution must then factor this element into the formu-

lation of fiscal policies. And indeed, we show that because of this indeterminacy, income

redistributions that reduce inequality can aggravate status consumption and reduce welfare.

We develop our formal model in Section 2 by integrating loss aversion into the network

framework of conspicuous consumption introduced by Ghiglino and Goyal (2010). Agents

allocate their income between a conventional commodity and a status-enhancing commodity

to maximize a Cobb-Douglas utility subject to a budget constraint.1 Agents have heteroge-

neous incomes and are embedded into a social network of status comparisons. They assess

how their own status consumption compares to a benchmark equal to the mean status con-

sumption of their network peers. The utility loss from a negative difference to this social

reference point is larger than the utility gain from a positive difference of the same magnitude.

Agents’ consumption decisions then depend on the consumption decisions of their network

peers. Our main objective is to analyze the Nash equilibria of the resulting network game.

Overall, we find that loss aversion has a profound impact on outcomes. An important

preliminary observation is that the formal analysis is much more involved under loss aver-

sion. Without loss aversion, the consumption game has linear best responses, there is a

unique Nash equilibrium, and status consumption is related to network centrality. None of

these properties holds under loss aversion. We develop our analysis in several stages. We

analyze best responses in Section 3.1, Nash equilibria in Section 3.2, welfare in Section 3.3,

comparative statics with respect to incomes and to the network in Section 4, and extensions

to heterogeneous preferences in Section 5.1 and to general utility functions in Section 5.2.

Our first main result establishes the existence of two mutually exclusive domains. In

the conformism domain, there is a continuum of Nash equilibria where all agents have the

same status consumption. In the differentiated domain, there is a unique Nash equilibrium
1We extend the analysis to general utility functions in Section 5.2. We notably show that our equilibrium

characterization extends to heterogeneous and homothetic utilities.
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where agents have different status consumption. Conformist equilibria appear whenever loss

aversion is large enough relative to income heterogeneity, measured by the ratio of highest to

lowest income. In our second main result, we show that there is excessive status consumption

in any equilibrium. This is intuitive, as status concerns generate negative externalities and

play no useful social role in this framework. Welfare of conformist equilibria also decreases

with status consumption, leading to potentially large welfare differences between the best

and the worst equilibrium.

Our analysis reveals qualitative differences between the two domains in the impacts of

networks and incomes. Status consumption in the conformism domain is characterized, quite

remarkably, by a form of network neutrality. The whole set of Nash equilibria is unaffected by

network geometry, as long as the network is connected.2 Nash equilibria are also unaffected

by income changes which hold the lowest and highest incomes constant. This does not

mean, however, that these income changes have no impact. In a conformist equilibrium, an

income difference between two agents is passed on one-to-one into a difference in conventional

consumption. Uniformity in status consumption is then associated with excess variation in

conventional consumption. This may have severe consequences for poorer agents, who may

have to drastically reduce consumption of necessities in order to maintain status.

By contrast status consumption is not uniform in the differentiated domain, and some

individuals earn strict status gains while others earn strict status losses. In this domain,

status consumption and individuals’ positions relative to their reference points are determined

by complex interactions between the network structure and the income distribution. We

generalize the formula connecting status consumption to network centrality in the absence

of loss aversion. This allows us to generically quantify the impact of small income shocks

on the whole system. Consider an initial Nash equilibrium and some agent i whose status

consumption differs from her reference point. We show that a small increase in i’s income

leads to an increase in the status consumption of every agent j, as the initial shock spills

over indirect connections. This impact is higher when there are more walks connecting i to

j in the network and when there are more agents earning status losses along these walks.
2By contrast, status consumption is not network neutral when considering potentially disconnected net-

works, as illustrated in our discussion of bridges below.
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The reason is that under loss aversion, agents are more reactive when they lie below their

reference points, leading to greater amplification of spillovers.

This does not mean, however, that conformism plays no role in the differentiated domain.

In our third main result, we show that for every agent, there exists an intermediate income

range where status consumption is precisely equal to the reference level. Within this range,

the agent acts as a pure conformist and her status consumption is invariant to changes in

her own income. In other words, we show that the demand elasticity of the status good is

equal to zero for intermediate income levels.3 This is an interesting, and quite surprising,

prediction, since luxury goods typically exhibit high income elasticity.

We then analyze comparative statics related to transitions between domains. We consider

both income and network changes. We first look at income redistributions that reduce in-

equality and the ratio of highest to lowest income. These redistributions can steer society

away from the differentiated domain and towards the conformism domain. As a consequence,

they carry the trade-off of introducing equilibrium ambiguity and potentially reducing overall

welfare. Second, we consider the impact of adding bridges between previously disconnected

communities. These bridges could represent, for instance, inter-caste marriages in an Indian

context. When communities are homogeneous in terms of income, adding even one bridge

can steer society away from community conformism and towards the differentiated domain.

Underprivileged agents then loose while affluent agents gain, and the magnitude of these

losses and gains can be substantial.

Finally, we extend our analysis in two directions. We introduce heterogeneity in prefer-

ences, and in degrees of loss aversion in particular. We find that preference heterogeneity

tends to dampen the emergence of global conformism when agents have homogeneous in-

comes. In the presence of income inequality, by contrast, preference heterogeneity can coun-

terbalance the effect of income heterogeneity and facilitate the emergence of conformism. We

also consider more general utility functions. We show that our main results extend to homo-

thetic preferences, a class that contains Cobb-Douglas utilities and utilities with Constant

Elasticity of Substitution (CES). While we leave a full-fledged analysis of general utility func-
3The existence of this conformist range holds for every connected network and every position within the

network. The precise values of the range, however, depend on the agent’s network position, on the broader
network structure and on incomes.
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tions for future research, we establish some preliminary results and show that the emergence

of a continuum of conformist equilibria is a robust phenomenon.

Related Literature. Our analysis contributes to the literature on games played on net-

works4 and, in particular, on status games, see Ghiglino and Goyal (2010), Immorlica et al.

(2017) and Langtry (2022). In Immorlica et al. (2017), an agent’s utility depends linearly on

a weighted sum of differences between own costly action and the actions of neighbors taking

a higher action, an assumption akin to an extreme form of loss aversion. There is no social

reference point and individual incomes play no role. Authors notably analyze properties of

Nash equilibria where players take the highest action. Langtry (2022) modifies Immorlica

et al. (2017)’s framework and assumes that agents form a social reference point based on

their neighbours consumption. However, because of constant marginal cost, the introduc-

tion of loss aversion has no impact in his setup, and there is a unique, non conformist Nash

equilibrium. In Sadler and Golub (2023), agents compete for status as in Immorlica et al.

(2017) and simultaneously choose their connections which provide a fixed benefit. The focus

is on the topology of the endogenous network. Finally, López-Pintado and Meléndez-Jiménez

(2021) study a game of effort provision, rather than status. Agents gain an extra utility when

producing an outcome above a “comparison threshold” derived from the outcomes of their

reference group. The network is a realization of a random process and the authors show that

the density of the network may be harmful to effort provision.

By contrast, we analyze the choices of consumers allocating heterogeneous incomes across

two categories of goods. There is a possibility of substitution between the two goods, leading

to heterogeneous and non linear marginal costs. Together with loss aversion and a societal

reference point, this formulation allows us to study how status consumption depends on net-

work positions and income and preference heterogeneity. Overall, it leads to a very different

set of results than in the cited works. Formally, our analysis makes progress on the study of

network games with non linear best responses.

Our paper is also related to a wider literature on diffuse social effects that abstracts from

network and neighborhood effects, as in status games where individuals care about their rank
4See Bramoullé and Kranton (2016) and Jackson and Zenou (2015) for reviews of the literature and

Ushchev and Zenou (2020) for the analysis of a network game with conformism, where agents compare their
own effort to the average effort among their network peers.
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(Becker and Tomes (1979), Frank (1985b), Hopkins and Kornienko (2004)). It also relates to

models were agents “keep up with the Joneses” by comparing their consumption or income to

economy wide references (Duesenberry (1949), Abel (1990), Campbell and Cochrane (1999),

Ljungqvist and Uhlig (2000)) and to a literature on consumption with socially determined

needs. Bellet and Colson-Sihra (2018) and Lewbel et al. (2022) provide evidence that the

perceived needs of consumers may depend on social features of the environment, see Pollak

(1976) for an early analysis.

Few works have considered loss aversion in models with diffuse social effect. Friedman and

Ostrov (2008) consider a continuum of identical consumers. The comparison of own status

consumption with everyone else is weighted differently depending on whether the difference

is positive or negative. They show that an interval of symmetric equilibria in pure strategies

may exist. Asymmetry in comparison is also present in Frank et al. (2014), who consider

upward looking relative concerns rather than downward looking as in rank dependent models.

Hopkins (2023) extends Hopkins and Kornienko (2004) and develops a model where agents

care, potentially asymmetrically, about their cardinal positions in the status distribution.

Social reference points is a central feature of the literature on aspirations as in Ray (1998),

Ray (2006), Appadurai (2004), Genicot and Ray (2020), and Genicot and Ray (2017). As-

pirations provide the threshold that separates achievement from failure. Aspirations are

determined by own past aspiration and by social actions and importantly payoffs are asym-

metric. In the same vein, in Bogliacino and Ortoleva (2014) loss-averse individuals compare

own bequests to the average bequest. Equilibrium multiplicity in their framework is related

to the overlapping generation structure, and does not deliver conformism.

Compared to this literature, by contrast, we tackle the more realistic, and more tech-

nically challenging, case of a finite society, where the action of one agent may have non

negligible impacts on others and these interactions are structured through a social network.

Furthermore, we fully explore how economic outcomes depend on the interplay between loss

aversion, income and preference heterogeneity, and the network structure.

Fehr and Schmidt (1999), and the vast experimental literature that followed, also consider

interpersonal comparison of monetary outcomes with loss aversion. Typically, comparisons

are with each individual in the economy, rather than with a local social average.
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Further away from social interactions, the role of reference points is central in the vast lit-

erature issued from prospect theory (Kahneman and Tversky (1979), Tversky and Kahneman

(1992)).5 A central question is how reference points are formed. In the existing literature,

reference points are typically either related to own experience as in the habit formation mod-

els of Carroll and Weil (1994) and Overland et al. (2000)6 or equal to agents’ expectations

as in Kőszegi and Rabin (2006) and Heidhues and Kőszegi (2018). In an important anal-

ysis, Heidhues and Kőszegi (2008) study a differentiated good economy with heterogeneous

firms and loss averse consumers. They notably show that firms can charge the same “focal”

price, even when facing different cost distributions, a form of conformism in firm behavior.

The broad intuition is that as marginal utility discontinuously drops at the reference point,

the optimal response may deliver the reference point as an equilibrium which, depending on

assumptions on how this reference point is formed, can yield conformism.7

Our framework shares with these models the general property that, due to loss aversion,

there might be bunching at the reference point. We provide, however, the first analysis of

the impact of loss aversion when the reference point is endogenously determined by simulta-

neous choices of peers. This yields novel insights on how conspicuous consumption and the

emergence and features of conformism depend on incomes, preferences, and social networks.

2 The Model

We introduce loss aversion into a network model of status consumption. We consider a

society of n consumers. Each agent i allocates her budget wi > 0 between the consumption

of a standard good, xi ≥ 0, and of a status good, yi ≥ 0. The price of the standard good is

normalized to 1 and let p denote the relative price of the status good. The budget constraint

is xi + pyi ≤ wi.

Agents are embedded in a directed social network, describing comparison relationships.
5This literature has extended far beyond the initial focus on decisions under risk, see Thaler (1980) and

Barberis (2013) for a survey.
6See Andersen et al. (2022) for a recent application to the housing market.
7See also Bhaskar (1990) for an analogous mechanism operating in a unionised wage setting model when

workers are worried of being underpaid and Segal and Spivak (1990) for an analysis of how kinks in the utility
function affect decisions under risk.

7



Denote by Ni the comparison group of agent i, of size |Ni|. We consider a connected network;

any agent can be reached from any other agent through an indirect path in the network. This

implies that no agent is socially isolated, ∀i, Ni 6= ∅. Each agent compares her consumption

of the status good, yi, to the average consumption in her comparison group, ȳi =
∑

j∈Ni
yj

|Ni| .

Denote by G the interaction matrix such that gij = 1
|Ni| if j ∈ Ni and gij = 0 if j /∈ Ni, with

ȳi =
∑

j gijyj.

Agents’ preferences are described by the following Cobb-Douglas utility function, which

depends on own consumption of the standard good and of own and peers’ consumption of

the status good,

ui(xi, yi,y−i) = xσi ϕ(yi,y−i)
1−σ (1)

with

ϕ(yi,y−i) = yi + α(yi − ȳi) if yi ≤ ȳi

ϕ(yi,y−i) = yi + β(yi − ȳi) if yi ≥ ȳi

where σ ∈ (0, 1) represents the consumption elasticity of the standard good and α ≥ β ≥ 0

capture how much agents compare their consumption of the status good to others’ consump-

tion. Note that this utility function is well-defined, and greater than or equal to zero, when

ϕ(yi,y−i) ≥ 0. For completeness, we assume that ui = −U < 0 when ϕ(yi,y−i) < 0. This

means that agent i “needs” to consume at least α
1+α

ȳi units of status good before starting to

consume the standard good.

This formulation nests well-known cases. When α = β = 0, there is no social comparison.

Agents have standard Cobb-Douglas preferences and xi = σwi and yi = (1− σ)wi

p
.

When α = β > 0, there is social comparison without loss aversion. This is the benchmark

case analyzed in Ghiglino and Goyal (2010). An agent’s consumption depends on her peers’

consumption, defining a simultaneous, complete information network game. The budget

constraint binds, implying xi = wi − pyi. The utility as a function of status consumption

only is ui(yi,y−i) = (wi − pyi)
σ((1 + α)yi − αȳi)

1−σ with yi ∈ [0, wi

p
]. This yields, ∂ui

∂yi
=
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(− pσ
wi−pyi + (1+α)(1−σ)

(1+α)yi−αȳi )ui. And
∂ui
∂yi

= 0⇔ yi = (1− σ)wi

p
+ σ α

1+α
ȳi when ui > 0.

When α is not too high, individual best response is linear and there exists a unique

Nash equilibrium to the consumption game. Denote by I the identity matrix. The unique

equilibrium is interior and equal to

y =
1− σ
p

(I− σ α

1 + α
G)−1w (2)

This notably implies that ∂yi
∂wj

> 0 for any pair i, j. When wj increases, agent j increases her

consumption of the status good. Because of social comparisons, agent j’s peers then increase

their status consumption. In turn, agent j’s peers of peers increase their consumption and

since the network is connected, everyone is eventually affected.

Our main contribution is to introduce loss aversion in status concerns. When α > β,

the status losses from having a consumption level of the status good below peers’ average

are larger in absolute value than the status gains from having a status consumption above

peers’ average of the same magnitude. This introduces a kink in the utility function, which is

not differentiable around the reference level yi = ȳi. Our main objectives are to characterize

the Nash equilibria of the consumption game and to understand how loss aversion affects

equilibrium behavior. We will see below that loss aversion introduces significant complexities

in the analysis and has first-order impacts on outcomes.

3 Equilibrium characterization

We develop our analysis in three stages. First, we show that the best response is an in-

creasing piecewise linear function with three pieces. A key implication of loss aversion is to

induce pure conformist behavior over an intermediate range. Second, we present our main

characterization result. We uncover the existence of two mutually exclusive domains. In the

conformism domain, there is a continuum of Nash equilibria where all agents have the same

status consumption. In the differentiated domain, there is a unique Nash equilibrium where

agents consume different quantities of the status good. Third, we analyze welfare and show

that agents consume excessive amounts of status goods in equilibrium.
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3.1 Best response

As a preliminary remark, note that the budget constraint implies that yi ∈ [0, wi

p
] and hence

that ȳi ∈ [0, w̄i

p
]. Therefore, an agent can afford the minimal level of consumption of status

good α
1+α

ȳi for every possible consumption levels of her peers if and only if wi ≥ α
1+α

w̄i and

we maintain this assumption in what follows.

We next derive the individual best response in the consumption game. Denote by fi(y−i)

the best response of agent i, i.e., the solution to the problem of maximizing ui(yi,y−i) =

(wi − pyi)σϕ(yi,y−i)
1−σ under the constraint that yi ∈ [0, wi

p
]. Note that ui is continuous,

and hence admits a maximum on the compact interval [0, wi

p
]. Further, we show that ln(ui)

is strictly concave on this interval’s interior, and hence ui admits a unique maximum. Let

a = α
1+α

and b = β
1+β

, such that 0 ≤ b ≤ a ≤ 1. Detailed proofs are provided in the Appendix.

Proposition 1. The best response of agent i in the consumption game is equal to:

fi(y−i) = (1− σ)wi

p
+ σbȳi if ȳi ≤ 1−σ

1−σb
wi

p

fi(y−i) = ȳi if 1−σ
1−σb

wi

p
≤ ȳi ≤ 1−σ

1−σa
wi

p

fi(y−i) = (1− σ)wi

p
+ σaȳi if ȳi ≥ 1−σ

1−σa
wi

p

We illustrate Proposition 1 in Figure 1. We depict how agent i’s consumption of the

status good yi depends on the average consumption among her peers, ȳi. Three domains

appear. When the social reference level is low, the agent is in a domain of status gains. Her

consumption level is linear in ȳi with slope σb < 1. When the social reference level is high,

the agent is in a domain of status losses. Her consumption level is also linear in ȳi with slope

σa < 1. The slope in the loss domain is higher than in the gain domain due to loss aversion,

a > b. Note, also, that these two straight lines have the same intercept, equal to status

consumption in the absence of social comparison, (1− σ)wi

p
. Crucially, we see the emergence

of an intermediate domain, when ȳi ∈ [ 1−σ
1−σb

wi

p
, 1−σ

1−σa
wi

p
]. In this domain, the agent behaves as

a pure conformist and sets her consumption level equal to the social reference level, yi = ȳi.

Intuitively, the agent in this domain can avoid status losses, but cannot afford status gains.

This conformism domain only appears under loss aversion when α > β and its size increases

when the wedge between status gains and status losses expands.

An important implication of Proposition 1 is that the best response of an agent is strictly

10



slope 1

slope σa

slope σb

fi(y-i)

y̅i

(1-σ)wi /p

Figure 1: Individual best response under loss aversion

increasing over her strategy space. This implies that the consumption game is supermodular.8

A well-known consequence is that there exists a lowest and a highest Nash equilibrium, ymin

and ymax, such that for any Nash equilibrium y, ∀i, ymini ≤ yi ≤ ymaxi . In addition, an

increase in wi leads to a weak increase in the best response of agent i, and hence to a weak

increase in the action of every agent in both the lowest and highest Nash equilibrium. We

will be using these properties in the proof of our next result below.

3.2 Nash equilibria

To provide some intuition for our next result, we show how to determine Nash equilibria

graphically with two agents. We depict the best responses of the two agents in the same

graph and under three scenarios in Figure 2. A profile is a Nash equilibrium if it lies at

the intersection of the two curves. In the upper panel, the two agents have equal incomes,

w1 = w2. We see that there is a continuum of Nash equilibrium, where both agents choose

the same level of status good, and this continuum corresponds precisely to the conformist

portions of the best responses. In the middle panel, we assume that agent 2 is now richer than

agent 1, w2 > w1, and that the income difference is not too high. Agent 2’s best response is

now shifted upwards. We see that there is still a continuum of conformist Nash equilibria,
8See e.g. Milgrom and Roberts (1990) and Vives (1990) for classical references on supermodular games.
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y1

y2

(a) Equal incomes

y1

y2

(b) Low income inequality

y1

y2

+

(c) High income inequality

Figure 2: Nash equilibria with two agents
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corresponding to the intersection of the two conformist domains. In the lower panel, we

depict a case where agent 2 is now much richer than agent 1. Agent 2 best response is shifted

upwards even further. The intersection of the conformist domains is now empty. There is a

unique Nash equilibrium where y2 > y1, and the richer agent earns strict status gains while

the poorer agent earns strict status losses.

We can now state our characterization Theorem, which shows that the logic of this ex-

ample extends to any connected network. Let wmin and wmax denote the lowest and highest

wealth levels among agents. A richest agent is an agent with wealth wmax while a poorest

agent has wealth wmin. Say that agent i earns status gains in Nash equilibrium y when

ȳi ≤ 1−σ
1−σb

wi

p
, and hence by Proposition 1, yi = σbȳi + (1 − σ)wi

p
≥ ȳi. These status gains

are strict if ȳi < 1−σ
1−σb

wi

p
, and hence yi > ȳi. Similarly, agent i earns status losses when

ȳi ≥ 1−σ
1−σa

wi

p
and yi = σaȳi + (1− σ)wi

p
≤ ȳi. She earns strict status losses when ȳi > 1−σ

1−σa
wi

p
,

and yi < ȳi.

Theorem 1. Consider any connected comparison network.

(Conformism and Indeterminacy) If wmax

wmin
≤ 1−σb

1−σa , then a profile y is a Nash equilibrium if

and only if y = (y, y, ..., y) with y ∈ [ 1−σ
1−σb

wmax

p
, 1−σ

1−σa
wmin

p
].

(Differences and Uniqueness) If wmax

wmin
> 1−σb

1−σa , then there is a unique Nash equilibrium y and

∀i, 1−σ
1−σa

wmin

p
≤ yi ≤ 1−σ

1−σb
wmax

p
. Richest agents earns strict status gains while poorest agents

earn strict status losses.

The proof in Appendix unfolds in several steps. In a conformist profile, the best response

of every agent lies in the conformist domain. And hence conformist profiles are Nash equilibria

when the intersection of the conformist domains is not empty, which happens when wmax

wmin
≤

1−σb
1−σa . Next, we show that in this case they are the only equilibria. We exploit the fact that

the lowest (highest) equilibrium must be lower than or equal to (higher than or equal to) the

lowest (highest) conformist equilibrium and the following elementary graph property. If in a

connected network, yi ≥ ȳi for every i, then yi = y for every i. Agents cannot all consume

more than their neighbors. Finally when conformist equilibria do not exist, we show that

Nash equilibria must lie in a restricted subset and that the best response is contracting over

this subset. Contraction holds here because the slopes of the best responses are always lower
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than or equal to 1, and must be strictly lower than 1 for poorest and richest agents in this

restricted subset.

Theorem 1 uncovers the existence of a domain with conformism and indeterminacy. In

this domain, all agents consume the same level of status good, even when they have different

incomes and network positions. This level is indeterminate and varies within an interval.

Interestingly, conformism appears even though agents do not derive utility from conforming

to others’ actions. Rather, they have status concern and display loss aversion with respect

to their reference level. All agents are thus extra motivated not to fall below their neighbors’

average consumption. We show that the interplay of these incentives over a connected net-

work leads to global conformism when income heterogeneity is not too high. Conformism in

status consumption does not mean that all agents have the same outcomes, however. Since

xi = wi − py, an income difference between two agents is passed on one-to-one into a differ-

ence in conventional consumption. Poorer agents have lower conventional consumption and

lower utility. Status concerns and loss aversion then induce excess variation in conventional

consumption across agents.

Theorem 1 identifies some remarkable network neutrality properties. Conditional on being

connected, the precise structure of the network does not affect actions in the conformism

domain, nor the condition separating the two domains. By contrast, network structure

matters when considering potentially disconnected networks or in the differentiated domain,

and we analyze both features in more detail below.

The key condition separating the two domains is whether wmax

wmin
is lower or higher than

1−σb
1−σa .

9 The ratio of highest to lowest income is a measure of income heterogeneity. Other

income levels do not affect this condition, since in a conformist profile poorest and richest

agents have the strongest incentive to deviate. The ratio 1−σb
1−σa is equal to 1 when there is

no loss aversion and α = β. This ratio increases with loss aversion, when α becomes higher

than β. This key condition thus compares income heterogeneity with loss aversion.

When income heterogeneity is high relative to loss aversion, the consumption game has

a unique Nash equilibrium. Theorem 1 shows that poorest agent always have a status con-
9In the knife-edge case where wmax

wmin
= 1−σb

1−σa , there is a unique equilibrium where all agents have the same
status consumption.
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sumption lying strictly below their reference level while richest agent always have a status

consumption lying strictly above their reference level. For all other agents, the relative

position with respect to the reference level - above, below, or equal to - depends on the

parameters.

Conditional on which agent lies in which domain, Proposition 1 shows that equilibrium

consumption levels solve a linear system of equations. More precisely, consider a Nash equi-

librium y. Let D = {i : yi 6= ȳi} and C = {i : yi = ȳi}. Define the matrix H as hij = σagij if

yi < ȳi, hij = σbgij if yi > ȳi and hij = gij. This matrix is obtained from G by premultiplying

rows by σa, σb or 1, and note that I−H is invertible.10 Let wD denote the vector of incomes

of agents in D and 0C a vector of zeros of dimension |C|. Proposition 1 implies that the

unique Nash equilibrium y satisfies

y =
1− σ
p

(I−H)−1

 wD

0C

 (3)

Equation (3) represents a variant of the usual matrix inverse formula obtained in equation

(2). The matrix inverse (I−H)−1 can be written as an infinite series (I−H)−1 = I + H +

H2 + ..., and its elements are equal to weighted averages of numbers of walks in the network.

A key difference, however, is that the matrix H depends on agents’ relative positions to

their reference levels, and these positions are endogenous. In other words, equation (3) can

generally not be used directly to compute equilibrium consumption. It can be used to analyze

comparative statics, however, as shown in Section 4 below.

One interesting exception is when there are only two income levels. In that case, any

agent is either a poorest agent or a richest agent and by Theorem 1, their relative posi-

tions are known. Matrix H is then predetermined, set C is empty, and equation (3) can be

used to compute equilibrium consumption. In more general situations, we can compute the

unique Nash equilibrium by leveraging algorithmic results from the literature on supermod-

ular games. We know, in particular, that a process of synchronous, iterated best responses

starting at y = 0 converges fast, and via an increasing sequence, to the equilibrium.
10We show in the proof of Theorem 1 in Appendix that the spectral radius of H is strictly lower than 1.
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3.3 Welfare

We now analyze welfare properties of Nash equilibria. Say that profile y is strictly Pareto

dominated if there exists a profile y′ such that ∀i, ui(y′) > ui(y).

Theorem 2. Starting from any Nash equilibrium, a small common reduction of status con-

sumption increases every agent’s utility. Thus, every Nash equilibrium is strictly Pareto

dominated.

In the conformism domain, a Nash equilibrium with common status consumption y is

strictly Pareto dominated by another Nash equilibrium with consumption y′ if y′ < y.

Theorem 2 shows that there is excessive status consumption in equilibrium. This result is

in line with existing results in the literature on status and with the fact that the consumption

game displays negative externalities, ui is decreasing in yj for any i and j ∈ Ni. Status

concerns play no useful social role in this static framework, and lead to collective over-

consumption of status goods. A more novel implication is that in the conformism domain,

status consumption and welfare can vary significantly across Nash equilibria. The negative

consequences of status concerns can be benign or severe depending on which equilibrium is

selected, and we provide numerical examples of these differences below.

4 Comparative statics

In this Section, we analyze how equilibrium behavior is affected by parameters of the model

and, in particular, by incomes and by the network. As a starting point, we make use of

standard results of comparative statics for supermodular games. From Proposition 1, we

know that the whole best response of agent i increases weakly following an increase in wi,

α, β or a decrease in p. Therefore, the actions of all agents in the lowest and in the highest

Nash equilibrium also increase weakly following an increase in wi, α, β or a decrease in p.

Corollary 1. Let ymin and ymax denote the lowest and highest Nash equilibrium. Let ŵ ≥ w,

α̂ ≥ α, β̂ ≥ β and p̂ ≤ p. Then, ymin(ŵ, α̂, β̂, p̂) ≥ ymin(w, α, β, p) and ymax(ŵ, α̂, β̂, p̂) ≥

ymax(w, α, β, p).
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A direct implication of Corollary 1 is that in the uniqueness domain, status consumption of

i is weakly increasing in wj for any pair i, j. By contrast, we know that in the absence of

loss aversion, yi is strictly increasing in wj for any pair i, j in a connected network. Does

consumption also increase strictly with income under loss aversion?

The answer to this question turns out to be negative. We next show that under loss

aversion, the unique Nash equilibrium in the differentiated domain displays inaction bands,

i.e., zones of the parameter space of positive measure where actions are invariant to changes.

Proposition 2. Consider agent i in a connected network with n ≥ 3, and w−i such that
wmax

wmin
> 1−σb

1−σa . There exists w1
i , w2

i such that wmin < w1
i < w2

i < wmax and the unique Nash

equilibrium y is invariant, and satisfies yi = ȳi, when wi ∈ [w1
i , w

2
i ].

Our proof in Appendix combines two arguments. First from Theorem 1, we know that

when i’s income is lowest, i’s status consumption lies strictly below his neighbors’ average

consumption while when i’s income is highest, his status consumption lies strictly above

his neighbors’ average consumption. By continuity, this implies that at some intermediate

income level, i’s status consumption must be equal to his neighbors’ average. Second, the kink

in the utility function induced by loss aversion implies that when i’s reaches this conformity

domain, she actually stays in it over an interval of positive measure.

Proposition 2 identifies a novel testable implication of loss aversion with respect to a

socially defined reference level. It shows that demand elasticity of status goods with respect

to income must be equal to zero over intermediate ranges of income levels. This shows

that loss aversion also deeply affects behavior in the differentiated domain. In general when

demand elasticity is positive, we can make use of the matrix inverse formula, equation (3),

to compute marginal effects of incomes on consumption. There is some empirical evidence

that income elasticity of conspicuous goods is affected by social concerns. Indeed, using a

model of relative deprivation (i.e., without loss aversion), Bellet and Colson-Sihra (2018) find

that in India inequality exposure increases the need for the poor to consume luxury goods,

lowering their income elasticity.11

Consider an income profile w such that wmax

wmin
> 1−σb

1−σa and ∀i, ȳi 6= 1−σ
1−σb

wi

p
, 1−σ

1−σa
wi

p
. By

11Heffetz (2011) finds that income elasticity for a given good is related to its visibility, an indirect indication
of a link between income elasticity and social effects.
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Proposition 1, this means that no agent is on the edge of switching domains. Thus, relative

positions with respect to the reference level are unchanged following small changes in incomes.

If j lies in the conformist domain, yj = ȳj, taking the derivative of equation (3) yields

∂yi
∂wj

= 0

which is consistent with Proposition 2. If yj 6= ȳj, we obtain the following explicit formula.

Proposition 3. Consider the unique Nash equilibrium in the differentiated domain, and

assume that no agent is on the edge of switching domains and that agent j is not in the

conformist domain. Then,

∂yi
∂wj

=
1− σ
p

(I−H)−1
ij =

1− σ
p

(Iij + hij +
∞∑
l=2

∑
i1=i,i2,...,il=j

hi1i2 ...hil−1il). (4)

Each positive term in the sum on the right hand side corresponds to a walk between i and

j in the network. The weight associated to the walk, hi1i2 ...hil−1il , is greater if there are more

agents earning strict or zero status losses among agents i1, ..., il−1 in the walk. The reason

is that hkl = gkl when yk = ȳk, hkl = σagkl when yk < ȳk and hkl = σbgkl when yk > ȳk.

Reaction to shocks is then greatest for agents in the conformist domain, and greater for

agents in the loss domain than for agents in the gain domain due to loss aversion. Agents in

the conformist and loss domain thus provide more amplification of indirect effects. Overall,

this shows that the impact of j’s income on i’s status consumption depends on the walks

between i and j in the network and on the relative positions that agents in these walks have

with respect to their reference level.

We next highlight comparative statics implications of Theorem 1 that arise from jumps

across domains. We consider two different changes: income redistributions that tip society

towards conformism and the addition of bridges across disconnected communities that pushes

society away from community conformism.

Progressive income redistributions reduce inequality and the ratio of highest to lowest

income. By Theorem 1, income redistributions can then get society out of the differentiated

domain and into the conformism domain, at the cost of equilibrium indeterminacy and poten-
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Figure 3: Welfare effect of redistributions

tially significant welfare loss. Formally, consider the following simple redistribution scheme.

Agents are taxed at rate τ ∈ [0, 1] and tax earnings τ
∑

iwi are redistributed equally among

agents. Income after redistribution is

ŵi = (1− τ)wi + τw̄. (5)

This scheme compresses the whole distribution around the mean while preserving in-

come ranks. The ratio of highest to lowest income after redistribution is equal to ŵmax

ŵmin
=

(1−τ)wmax+τw̄
(1−τ)wmin+τw̄

and is decreasing in the tax rate. Suppose that income inequality is initially

high and that society is in the differentiated domain, wmax

wmin
> 1−σb

1−σa . Then, there exists τ0

such that 0 < τ0 < 1 and society is in the differentiated domain when 0 ≤ τ < τ0 and in the

conformism domain when τ0 ≤ τ ≤ 1. Tax rate τ0 is characterized by

ŵmax
ŵmin

=
1− σb
1− σa

⇔ τ0 =
(1− σa)wmax − (1− σb)wmin

(1− σa)wmax − (1− σb)wmin + σ(a− b)w̄
(6)

Once in the conformism domain, multiple equilibria appear. The best equilibrium in

terms of welfare is the equilibrium with lowest status consumption ymin = 1−σ
1−σb

ŵmax

p
. The

worst equilibrium is the one with highest status consumption ymax = 1−σ
1−σa

ŵmin

p
. Status

consumption decreases with τ in the best equilibrium and increases with τ in the worst

equilibrium. Inequality reducing income redistribution can then induce significant welfare

losses, as illustrated in the next example.

Example 1. Let p = 1, σ = 0.5 and a = 0.5, b = 0.2. Consider the star economy of 6
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individuals depicted in Figure 3. Individual 1 at the center has w1 = 10 while individuals

i ∈ {2, ..., 6} at the periphery have wi = 22. There is a unique, differentiated equilibrium with

y1 = 7.95, yi = 11.80 and utilitarian welfare W = 59.95. When τ = 1 (full redistribution),

ŵ1 = ŵi = 20, there is a continuum of conformist equilibria with status consumption y ∈

[11.11, 13.33] and utilitarian welfare W ∈ [34.40, 59.92]. Perfect equality leads to a drop in

welfare in any equilibrium, and to severe welfare losses in the worst equilibrium.

We sum up the results on income redistributions.

Corollary 2. Suppose that wmax

wmin
> 1−σb

1−σa and consider income redistribution ŵi = (1− τ)wi+

τw̄. Then, there exists τ0 such that 0 < τ0 < 1 and society is in the differentiated domain

when 0 ≤ τ < τ0 and in the conformism domain when τ0 ≤ τ ≤ 1. In the conformism domain,

status consumption decreases with τ in the best equilibrium and increases with τ in the worst

equilibrium. A redistribution that decreases income inequality can generate indeterminacy

and decrease welfare.

Finally, we show that bridges between communities can have a critical impact, in partic-

ular in the presence of income homophily.12 Consider two disconnected communities. The

network connecting agents within each community is connected, but there is initially no link

between the communities. Each community is relatively homogeneous in terms of incomes,

one community is poor, the other is rich. Formally, let wmin and wmax denote the lowest and

highest income in the poor community and w′min and w′max the lowest and highest income in

the rich community. Assume that wmax

wmin
< 1−σb

1−σa ,
w′max

w′min
< 1−σb

1−σa and wmin < w′min, wmax < w′max.

The equilibrium displays conformism within each community, with agents in the poor com-

munity having indeterminate status consumption y ∈ [ 1−σ
1−σb

wmax

p
, 1−σ

1−σa
wmin

p
] and agents in the

rich community having status consumption y′ ∈ [ 1−σ
1−σb

w′max

p
, 1−σ

1−σa
w′min

p
].

Consider the addition of one link between the two communities. This could represent,

for instance, one inter-caste marriage in an Indian context. The ratio of highest to lowest

income in the full population, w′max

wmin
, is much higher than within communities. Assume that

w′max

wmin
> 1−σb

1−σa . Society is now in the differentiated domain. By Theorem 1, we know that

12A bridge is a link whose deletion increases the number of connected components of the network. A
network displays income homophile when agents with similar incomes are more likely to be connected.
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Figure 4: Impact of bridges

for every i, yi ∈ [ 1−σ
1−σa

wmin

p
, 1−σ

1−σb
w′max

p
]. This implies that status consumption of all agents

in the poor community is higher than in the highest equilibrium without the bridge, while

status consumption of all agents in the rich community is lower than in the lowest equilibrium

without the bridge. In short, all poor agents lose and all rich agents gain, and these losses

and gains can be substantial depending on initial equilibrium selection. The next example

provides a simple illustration.

Example 2. Consider the situation depicted in Figure 4. There are three agents in the poor

community, organized in a line, and with income w = 10. There are also three agents in

the rich community, with income w = 20. Other parameters are σ = 0.5, α = 1.2, β = 0.2.

When the two communities are disconnected, Nash equilibria involve separate conformism

in each group, with y ∈ [5.45, 6.88] in the poor community and y′ ∈ [10.91, 13.75] in the

rich community. Utilities vary between 4.98 and 4.64 in the poor community and 9.96 and

9.27 in the rich community. Next add a bridge between the communities. There is now

a unique Nash equilibrium with status consumption among poor agents, from left to right,

y1 = 6.90, y2 = 6.95, y3 = 7.42 and among rich agents y4 = 10.76, y5 = 10.90, y6 = 10.91, and

utilities u1 = 4.62, u2 = 4.58, u3 = 4.26, u4 = 10.03, u5 = 9.96, u6 = 9.95.

We sum up results on bridges.

Corollary 3. Consider a poor and a rich community, initially disconnected. If communi-

ties are homogeneous in terms of incomes, each community lies in the conformism domain.

Consider adding one bridge between the two communities. If the difference in incomes be-
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tween communities is large enough, this pushes society towards the differentiated domain.

Consumption status of all poor agents is higher than in the highest equilibrium without the

bridge. Consumption status of all rich agents is lower than in the lowest equilibrium without

the bridge.

This shows that network structure has a first-order impact on consumption.

5 Extensions

In this Section, we analyze two extensions of the benchmark model. First, we relax the

assumption that agents have the same concern for status and loss aversion. Second, we relax

the assumption that they have Cobb-Douglas preferences. In both cases, we show that our

main characterization result extends .

5.1 Heterogeneity

In our benchmark analysis, agents may differ in their income levels and network positions.

We now consider a setup where agents may also differ in how much they care about status and

in their level of loss aversion. Formally, assume that agent i has individual specific interaction

parameters αi, βi with 0 ≤ βi ≤ αi and wi ≥ αi

1+αi
w̄i. This notably covers the specifications

of peer effects in Ghiglino and Goyal (2010) where the strength of interaction depends on

the number of neighbors, through increasing function S(.). In that case, αi = S(|Ni|)α and

βi = S(|Ni|)β, and heterogeneity in α and β arises from heterogeneity in degree.

Let ai = αi

1+αi
and bi = βi

1+βi
and introduce

ωbmax = max
i

wi
1− σbi

and ωamin = min
i

wi
1− σai

(7)

Theorem 1 then extends as follows.13

13Proposition 1 extends, replacing a by ai and b by bi. The proof of Theorem 3 then follows the same steps
as the proof of Theorem 1, we omit it for brevity. In the differentiated domain, agents who earn strict status
gains are agents with largest value of wi

1−σbi , while agents who earn strict status losses are those with lowest
value of wi

1−σai .
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Theorem 3. Consider any connected comparison network and heterogeneous interaction

parameters. If ωbmax ≤ ωamin, then a profile y is a Nash equilibrium if and only if y =

(y, y, ..., y) with y ∈ [ωbmax, ω
a
min]. If ωbmax > ωamin, then there is a unique Nash equilibrium y

such that ∀i, ωamin ≤ yi ≤ ωbmax and some agents earn strict status gains while other agents

earn strict status losses.

Theorem 3 shows that the emergence of two mutually exclusive domains, one with a con-

tinuum of conformist equilibria and another one with a unique equilibrium with different

actions, is robust to the introduction of heterogeneity in status concerns and loss aversion.

How does this heterogeneity then affect equilibrium behavior?

Under income homogeneity, heterogeneity tends to reduce the emergence of conformism.

When wi = w, the condition ωbmax ≤ ωamin reduces to βmax ≤ αmin where βmax = maxi βi and

αmin = mini αi. A continuum of conformist equilibria only appears when the heterogeneity in

interaction parameters is not too high. By contrast under income heterogeneity, heterogeneity

in α and β can expand the parameter range under which conformism appears. This depends

on the correlation between αi, βi and wi. Indeed, observe that ωbmax tends to decrease when

agents with higher incomes have lower β’s while ωamin tends to increase when agents with

lower incomes have higher α’s.

5.2 Utility functions

Our benchmark analysis relies on the assumption that agents possess Cobb-Douglas utilities.

We now relax this assumption. We show that Theorem 1 and 3 extend to homothetic prefer-

ences, a class including both Cobb-Douglas utilities and utilities with a constant elasticity of

substitution (CES). We also provide some results valid for general utilities and notably show

that the emergence of a continuum of conformist Nash equilibria is a robust phenomenon.

Consider a general utility function u(x, y), increasing and strictly concave in both argu-

ments. Denote by x(p, w) and y(p, w) the usual Walrasian demands in the absence of relative

comparisons, i.e., the solutions to the consumer problem maxx,y≥0 u(x, y) under x+ py ≤ w.

With status concerns, a first step of the analysis is to determine an agent’s best response

in the absence of loss aversion, i.e., when α = β. Assume then that agent i seeks to maxi-
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mize u(xi, ϕ(yi,y−i)) where ϕ(yi,y−i) = yi + α (yi − ȳi) = (1 + α) yi − αȳi under the budget

constraint xi + pyi ≤ wi. Let ϕi = ϕ(yi,y−i). The budget constraint can be rewritten as

xi + p
1+α

(ϕi + αȳi) ≤ wi leading to xi + p
1+α

ϕi ≤ wi−α p
1+α

ȳi. The consumer’s maximization

program is then equivalent to

max
x,ϕ≥0

u(x, ϕ), s.t. x+
p

1 + α
ϕ ≤ wi − α

p

1 + α
ȳi

This yields

ϕi = y(
p

1 + α
,wi −

pα

1 + α
ȳi)

Since ϕi = (1 + α) yi − αȳi, agent i’s best response is equal to

fi(y−i, α) =
1

1 + α
y(

p

1 + α
,wi −

pα

1 + α
ȳi) +

α

1 + α
ȳi (8)

which provides an explicit connection between the best response and the Walrasian demand.

Building on equation (8), we show the following properties in Appendix. First, the best

response with status concerns but without loss aversion, fi(y−i, α), is increasing in ȳi when

the conventional good is a normal good, i.e., ∂x
∂w

> 0. Second, this best response crosses the

45 degree line precisely once from above when the status good is a normal good, i.e., ∂y
∂w

> 0.

We then introduce loss aversion β < α, and show the robustness of the main features of the

best response identified in Proposition. More precisely, we show that the utility function

under loss aversion is strictly concave, leading to a unique best response. And for every i,

there exist two thresholds 0 < y1
i < y2

i such that fi(y−i) = fi(y−i, β) if ȳi ≤ y1
i , fi(y−i) = ȳi

if y1
i ≤ ȳi ≤ y2

i , and fi(y−i) = fi(y−i, α) if ȳi ≥ y2
i . The lower threshold y1

i is precisely

equal to the intersection of fi(y−i, β) with the 45 degree line, while the higher threshold y2
i is

equal to the intersection of fi(y−i, α) with the 45 degree line. The best response under loss

aversion therefore still has three distinct parts, with an intermediate range of pure conformist

behavior is robust. This implies that a continuum of conformist Nash equilibria exists when

the intersection of these conformist ranges is not empty.

Proposition 4. Consider a general utility function u(x, y), increasing and strictly concave

in both arguments, and such that both goods are normal goods. In the consumption game
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with status concerns and loss aversion, there exists δ > 0 such that there is a continuum of

conformist Nash equilibria if wmax − wmin < δ.

Extending the equilibrium analysis for general utility functions beyond Proposition 4

is challenging. Nash equilibria depend on the shape of the best response outside of the

conformist range and hence, by equation (8), on detailed properties of the Walrasian de-

mands. There is one particular case, however, where Theorems 1 and 3 extend, namely when

preferences are homothetic. Under homothetic preferences, Walrasian demands are linear

in income. A doubling of income yields a doubling of the demands. We can then write

x(p, w) = x(p)w and y(p, w) = y(p)w, where x(p) and y(p) are the Walrasian demands for 1

unit of income - and hence satisfy x(p) + py(p) = 1. Substituting in equation (8) yields

fi(y−i, α) =
1

1 + α
y(

p

1 + α
)wi +

α

1 + α
x(

p

1 + α
)ȳi

which is a linear function of ȳi with slope strictly lower than 1.

We can now state the extension of Theorem 3. The boundaries of the conformist interval

are related to the points where the linear best responses cross the 45 degree line. This leads

us to introduce the following notation:

ω̃bmax = max
i

y( p
1+βi

)

1 + p βi
1+βi

y( p
1+βi

)
wi and ω̃amin = min

i

y( p
1+αi

)

1 + p αi

1+αi
y( p

1+αi
)
wi

Theorem 4. Assume preferences are homothetic. Consider any connected comparison net-

work and heterogeneous interaction parameters. If ω̃bmax ≤ ω̃amin, then a profile y is a Nash

equilibrium if and only if y = (y, y, ..., y) with y ∈ [ω̃bmax, ω̃
a
min]. If ω̃bmax > ω̃amin, then there

is a unique Nash equilibrium y such that ∀i, ω̃amin ≤ yi ≤ ω̃bmax and some agents earn strict

status gains while other agents earn strict status losses.

25



6 Conclusion

We introduce loss aversion into a model of conspicuous consumption in networks. Agents

allocate heterogeneous incomes between a conventional and a status-enhancing commodity.

They are embedded within an interconnected comparison network and evaluate their personal

status spending against the average spending of their network peers. We find that loss

aversion has a first-order impact on consumption outcomes. We establish the existence of

two distinct and mutually exclusive domains. When loss aversion surpasses a threshold

related to income heterogeneity, a range of conformist Nash equilibria emerges. All agents

consume the same level of status good, despite differences in incomes and network positions.

When this threshold is not met, a unique Nash equilibrium arises. Status consumption then

depends on the interplay between the network structure and the income distribution. We

analyze comparative statics and show that a redistribution that reduces income inequality

can yield equilibrium ambiguity and severe welfare losses. Connecting a poor and a rich

community can get society out of community conformism, with significant losses for the

poor and gains for the rich. Our main characterization result extends to heterogeneous and

homothetic utilities.

Building on this analysis, future research could explore a variety of directions. First in

terms of public policies, it would be interesting to also look at taxes targeting status goods,

as advocated by Frank (1985a). Second, we focus here on the demand side of the econ-

omy, holding the supply side fixed. A natural next step would be to analyze the impact of

loss aversion, status concerns, and networks when both demand and supply are endogenous.

Third, introducing dynamics is also an important, and challenging, direction for future re-

search. While status concerns only have negative welfare implications in a static framework,

this needs not be true in a dynamic framework if current status expenditures affect future

productivity.

Our analysis also raises a number of empirical issues. Standard analysis of consumption

behavior focuses on households and individuals in isolation, neglecting status concerns and

social networks. Some of our results could potentially be tested on classical, individual-level

micro data. These include the surprising prediction that demand for status goods may be
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inelastic over intermediate income ranges. The broader message of our analysis, however, is

that consumption is a network phenomenon. To fully understand consumption patterns and

how consumption varies with income, we believe that researchers will need to collect and

analyze detailed data on social networks. Recent evidence (De Giorgi et al. (2020)) supports

the idea that this is an important direction for future research.
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7 Appendix
Proof of Proposition 1

We first show that ln(ui) is strictly concave over ]0, wi

p
[. When i consumes at least the

minimal amount of status good, we have:
ln(ui) = σln(wi − pyi) + (1 − σ)ln((1 + α)yi − αȳi) if yi ≤ ȳi and ln(ui) = σln(wi − pyi) +

(1− σ)ln((1 + β)yi − βȳi) if yi ≥ ȳi. This yields ∂ln(ui)
∂yi

= − pσ
wi−pyi + (1−σ)(1+α)

(1+α)yi−αȳi if yi ≤ ȳi and
∂ln(ui)
∂yi

= − pσ
wi−pyi + (1−σ)(1+β)

(1+β)yi−βȳi if yi ≥ ȳi.
Therefore, ∂ln(ui)

∂yi
is continuous and strictly decreasing until yi reaches ȳi from the left and

then, again, continuous and strictly decreasing when yi increases from ȳ+
i . Moreover, ln(ui)

is left and right differenntiable at yi = ȳi and

∂ln(ui)

∂yi
(ȳ−i ) = − pσ

wi − pȳi
+

(1− σ)(1 + α)

ȳi
>
∂ln(ui)

∂yi
(ȳ+
i ) = − pσ

wi − pȳi
+

(1− σ)(1 + β)

ȳi

The left-derivative at yi = ȳi is larger than the right-derivative, and hence ln(ui) is strictly
concave.

Since ln(ui) is a strictly concave function over ]0, wi

p
[, tends to −∞ at both extremes,

and has a kink at ȳi, it has a unique interior maximum and there are two possible cases.
Either ∂ln(ui)

∂yi
= 0 and yi 6= ȳi. Or ∂ln(ui)

∂yi
(ȳ−i ) ≥ 0 and ∂ln(ui)

∂yi
(ȳ+
i ) ≤ 0, and the maximum lies

precisely at the kink, yi = ȳi.
If yi < ȳi, then ∂ln(ui)

∂yi
= 0 ⇒ yi = σaȳi + (1 − σ)wi

p
. This is a valid solution only if

σaȳi + (1 − σ)wi

p
< ȳi. If yi > ȳi, then ∂ln(ui)

∂yi
= 0 ⇒ yi = σbȳi + (1 − σ)wi

p
. This is a valid

solution only if σbȳi + (1 − σ)wi

p
> ȳi. Otherwise, the maximum lies at the kink yi = ȳi.

QED.

Proof of Theorem 1
(1) Assume first that wmax

1−σb ≤
wmin

1−σa .
(1.1) Consider a profile y = (y, y, ..., y) where everyone plays the same action and y ∈
[ 1−σ
1−σb

wmax

p
, 1−σ

1−σa
wmin

p
]. For every i, ȳi = y. By Proposition 1, playing yi = y = ȳi is a best

response when 1−σ
1−σb

wi

p
≤ y ≤ 1−σ

1−σa
wi

p
. These inequalities hold since

1− σ
1− σb

wi
p
≤ 1− σ

1− σb
wmax
p
≤ y ≤ 1− σ

1− σa
wmin
p
≤ 1− σ

1− σa
wi
p

This shows that the conformist profiles described in the first part of the Theorem are indeed
Nash equilibria.
(1.2) Let us show that these are the only Nash equilibria in this domain. Recall, ymin and ymax

denote the lowest and highest Nash equilibria of the game. By (1.1) we know that ∀i, ymini ≤
1−σ
1−σb

wmax

p
. This implies that ȳmini ≤ 1−σ

1−σb
wmax

p
. Since by assumption 1−σ

1−σb
wmax

p
≤ 1−σ

1−σa
wmin

p
,

we have ȳmini ≤ 1−σ
1−σa

wi

p
. By Proposition 1, this implies that no agent is in the domain of

strict social losses and hence ∀i, ymini ≥ ȳmini . We can then invoke the following elementary
graph-theoretic property. Consider a directed, connected network such that ∀i, yi ≥ ȳi. Then
∀i, yi = y.
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To see why, let i0 be an agent with lowest value of yi. By assumption, yi0 ≥ ȳi0 . However,

ȳi0 =

∑
j∈Ni0

yj

|Ni0|
and since yj ≥ yi0 , ȳi0 ≥ yi0 . Therefore, yj = yi0 , for every j ∈ Ni0 . Apply the

same argument to the neighbors of the neighbors of i0. Then, repeat until the whole network
is covered, which is possible since the network is connected.

Therefore, everyone must play the same action in the lowest equilibrium. By (1.1),
this implies that ymini = 1−σ

1−σb
wmax

p
. Similarly, since ymax is the highest Nash equilibrium,

∀i, ymaxi ≥ 1−σ
1−σa

wmin

p
. This implies that ȳmaxi ≥ 1−σ

1−σa
wmin

p
, and hence ȳmaxi ≥ 1−σ

1−σb
wi

p
. By

Proposition 1, no agent is in the domain of strict social gains and ∀i, ymaxi ≤ ȳmaxi . Since
the network is connected, all agents also play the same action in the largest equilibrium and
ymaxi = 1−σ

1−σa
wmin

p
.

To conclude, note that any other Nash equilibrium y must satisfy ymini ≤ yi ≤ ymaxi . This
implies that 1−σ

1−σb
wmax

p
≤ yi ≤ 1−σ

1−σa
wmin

p
and hence 1−σ

1−σb
wi

p
≤ yi ≤ 1−σ

1−σa
wi

p
. By Proposition 1,

every agent is then in the conformist range: yi = ȳi, implying that everyone plays the same
action.
(2) Assume now that wmax

1−σb >
wmin

1−σa and let S = {y : ∀i, 1−σ
1−σa

wmin

p
≤ yi ≤ 1−σ

1−σb
wmax

p
}.

(2.1). Let us first show that all Nash equilibria belong to S and, moreover, that f(S) ⊂ S.
Consider a decrease in incomes w′ such that w′max

1−σb = wmin

1−σa and w′min = wmin. From the
first part of the Theorem, we know that at incomes w′, there is a unique Nash equilibrium
where every agent plays y = 1−σ

1−σa
wmin

p
. Since the lowest equilibrium decreases weakly when

incomes decrease, this implies that ∀i, ymini ≥ 1−σ
1−σa

wmin

p
. In particular if i is a poorest agent,

ȳmini ≥ 1−σ
1−σa

wi

p
and i earns status losses.

Similarly, consider an increase in incomes w′′ such that w′′min

1−σa = wmax

1−σb and w′′max = wmax.
At incomes w′′, there is a unique Nash equilibrium where all agents play y = 1−σ

1−σb
wmax

p
. Since

the highest equilibrium increases weakly following an increase in incomes, this implies that
∀i, ymaxi ≤ 1−σ

1−σb
wmax

p
. If i is a richest agent, ȳmaxi ≤ 1−σ

1−σb
wi

p
and i earns status gains.

Therefore, for any Nash equilibrum y, 1−σ
1−σa

wmin

p
≤ ymini ≤ yi ≤ ymaxi ≤ 1−σ

1−σb
wmax

p
. Any

Nash equilibrium thus belongs to S.
Next, consider y ∈ S. We have: 1−σ

1−σa
wmin

p
≤ yi ≤ 1−σ

1−σb
wmax

p
. Therefore, since i’s best

response is increasing, fi( 1−σ
1−σa

wmin

p
) ≤ fi(yi) ≤ fi(

1−σ
1−σb

wmax

p
). Since 1−σ

1−σa
wmin

p
≤ 1−σ

1−σa
wi

p
,

1−σ
1−σa

wmin

p
lies in the domain where fi lies weakly above the 45 degree line. Therefore,

fi(
1−σ
1−σa

wmin

p
) ≥ 1−σ

1−σa
wmin

p
. Similarly, since 1−σ

1−σb
wmax

p
≥ 1−σ

1−σb
wi

p
, 1−σ

1−σb
wmax

p
lies in the domain

where fi lies weakly below the 45 degree line and hence fi( 1−σ
1−σb

wmax

p
) ≤ 1−σ

1−σb
wmax

p
. This

implies that 1−σ
1−σa

wmin

p
≤ fi(yi) ≤ 1−σ

1−σb
wmax

p
, and hence fi(y) ∈ S.

(2.2) We now show that the overall best response f is contracting over S. Let i0 be
a richest agent, wi0 = wmax, and j0 be a poorest agent, wj0 = wmin. For any y ∈ S,
ȳi0 ≤ 1−σ

1−σb
wmax

p
= 1−σ

1−σb
wi0

p
. By Proposition 1, this implies that fi0(y) = σbȳi0 + (1 − σ)

wi0

p
.

Similarly, ȳj0 ≥ 1−σ
1−σa

wmin

p
= 1−σ

1−σa
wj0

p
and hence fj0(y) = σaȳj0 + (1− σ)

wj0

p
.

Next, observe that for any i, y, y′, |fi(y)− fi(y′)| ≤ |ȳi − ȳ′i|. This holds by Proposition
1 when ȳi and ȳ′i belong to the same domain. In these cases, fi is a linear function of ȳi with
slope lower than or equal to 1. This also holds when ȳi and ȳ′i belong to different domains.
For instance, if ȳi ≤ 1−σ

1−σb
wi

p
and ȳ′i ≥ 1−σ

1−σa
wi

p
, then fi(y) ≥ ȳi while fi(y′) ≤ ȳ′i. Thus,

0 ≤ fi(y
′)− fi(y) ≤ ȳ′i − ȳi.
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Introduce h the linear function that hi(y) = ȳi if i 6= i0, j0, hi(y) = σbȳi if i = i0 and
hi(y) = σaȳi if i = j0. This function is represented by the matrix H built from G by
multiplying row i0 by σb < 1, row j0 by σa < 1 and leaving other rows unchanged. Since G
is row-normalized with non-negative entries, the spectral radius of G is 1. From Corollary
2.6 in Azimzadeh (2019), we know that the spectral radius of H is strictly lower than 1 if
and only if there is a walk connecting every i 6= i0, j0 to i0 or to j0. Since the network is
connected, this property holds.

Finally, let ||.||2 denote the Euclidean norm. Then, for any y,y′ ∈ S,

||f(y)− f(y′)||22 = (fi0(y)− fi0(y′))2 + (fj0(y)− fj0(y′))2 +
∑
i 6=i0,j0

(fi(y)− fi(y′))2

||f(y)− f(y′)||22 ≤ (σb(ȳi0 − ȳ′i0))
2 + (σa(ȳj0 − ȳ′j0))

2 +
∑
i 6=i0,j0

(ȳi − ȳ′i)2

||f(y)− f(y′)||22 ≤ ||h(y)− h(y′)||22 ≤ ρ(H)||y − y′||22
Therefore, the best response f is contracting with respect to the Euclidean norm on S,

and hence has a unique fixed point.
(2.3) Finally, let us show that status losses (gains) earned by poorest (richest) agents are

strict. Let i be a poorest agent, wi = wmin. Suppose that i’s status losses are not strict,
yi = ȳi = 1−σ

1−σa
wmin

p
. Since ȳi =

∑
j∈Ni

yj

|Ni| and yj ≥ 1−σ
1−σa

wmin

p
, yj = 1−σ

1−σa
wmin

p
for every j ∈ Ni.

Therefore, yj ≤ 1−σ
1−σa

wj

p
and hence by Proposition 1, yj ≥ ȳj. Thus, ȳj ≤ 1−σ

1−σa
wmin

p
and

hence for every k ∈ Nj, yk = 1−σ
1−σa

wmin

p
. Repeating the argument and since the network is

connected, ∀k, yk = 1−σ
1−σa

wmin

p
. By (1.1), 1−σ

1−σb
wmax

p
≤ 1−σ

1−σa
wmin

p
, a contradiction. Therefore,

poorest agents earn strict status losses and, through similar arguments, richest agents earn
strict status gains. QED.

Proof of Theorem 2
Consider a Nash equilibrium y and a small common reduction of status consumption.

Let y′ be such that y′i = yi − ε for ε > 0. Denote by ϕi(y) = ϕ(yi,y−i).
A first observation is that ϕi(y′) = ϕi(y) − ε. To see why, note that ȳ′i = ȳi − ε. This

implies that agent i’s relative position to his reference point is the same in y′ and in y. If
yi > ȳi, then ϕi(y′) = y′i + α(y′i − ȳ′i) = yi + α(yi − ȳi)− ε = ϕi(y)− ε. The proof is similar
for the two other cases.

Next, compute agent i’s log utility

ln(ui(y
′)) = σln(wi − pyi + pε) + (1− σ)ln(ϕi(y)− ε)

When ε is small, we can take a first-order Taylor approximation

ln(ui(y
′)) ≈ ln(ui(y

′)) + ε(
σp

wi − pyi
− 1− σ
ϕi(y)

)
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This shows that a small common reduction of status consumption increases i’s utility if

σpϕi(y) > (1− σ)(wi − pyi) (9)

Consider, first, the unique Nash equilibrium in the differentiated domain. Consider an
agent i who earns status gains: yi ≥ ȳi, which implies ϕi(y) ≥ yi. Condition (9) is satisfied if
σpyi > (1−σ)(wi−pyi), which is equivalent to yi > 1−σ

p
wi. This always holds in equilibrium,

since 1−σ
p
wi is the intercept of the best response.

Consider next an agent i who earns strict status losses: yi < ȳi. Then, ϕi(y) = yi−α(ȳi−
yi). Condition (9) is equivalent to

p(yi −
1− σ
p

wi) > σpα(ȳi − yi)

By Proposition 1, we know that

yi =
1− σ
p

wi + σaȳi

and hence the condition is equivalent to aȳi > α(ȳi − yi), and hence to yi > aȳi. This holds
because ϕi(y) > 0.

Finally, consider a conformist equilibrium with status consumption y and note that y >
1−σ
p
wmax. In that case, ϕi(y) = y and ui = (wi − py)σy1−σ. Utility at equilibrium has the

same expression as utility in the absence of social comparison. Moreover, ui is log concave and
maximized at yi = 1−σ

p
wi. Thus, ui decreases strictly with y over the interval [1−σ

p
wi,

1
p
wi].

QED.

Proof of Proposition 2
Let y denote the unique Nash equilibrium. From the fact that the Nash equilibrium

correspondance is uhc we deduce that y varies continuously with wi as wi varies from wmin
to wmax. By Theorem 1 at wi = wmin, yi < ȳi while at wi = wmax, yi > ȳi. By continuity, i
must reach the conformist domain as he becomes richer. Let w1

i denote the first value of wi
such that yi = ȳi. By Proposition 1, we know that at w1

i ,

1− σ
1− σb

w1
i

p
≤ ȳi(w

1
i ) ≤

1− σ
1− σa

w1
i

p

Moreover, just a bit below, at w1
i − ε, we have yi < ȳi and hence

ȳi(w
1
i − ε) ≥

1− σ
1− σa

w1
i − ε
p

By continuity, this shows that

yi(w
1
i ) = ȳi(w

1
i ) =

1− σ
1− σa

w1
i

p
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Next, define w2
i as follows:

w2
i =

1− σb
1− σa

w1
i

and note that w2
i > w1

i . Then we claim that the Nash equilibrium at w1
i , y(w1

i ) is the nash
equilibrium for every wi in [w1

i , w
2
i ]. To see why, note that the best response of j 6= i is not

directly affected by wi. So any j still plays a best response. Next for i, we know that yi = ȳi.
And this is a best response iff

1− σ
1− σb

wi
p
≤ ȳi(w

1
i ) =

1− σ
1− σa

w1
i

p
≤ 1− σ

1− σa
wi
p

which is equivalent to

w1
i ≤ wi ≤

1− σb
1− σa

w1
i = w2

i .

QED.

Proof of Proposition 4
We develop our proof in five stages. (1) Consider, first, the best response with status

concerns but without loss aversion. From equation (8), take the derivative with respect to yi

∂f

∂yi
= − pα

(1 + α)2

∂y

∂w
+

α

1 + α

And since ∂x
∂w

+ p
1+α

∂y
∂w

= 1, this yields

∂f

∂yi
=

α

1 + α

∂x

∂w

This shows that f(yi, α) is increasing in yi when the conventional good is a normal good.

(2) From equation (8), consider the intersection with the 45 degree line, i.e., when fi(yi, α) =
yi. Rearranging yields

y(
p

1 + α
,wi − p

α

1 + α
yi) = yi (10)

The function on the left is decreasing in yi if the status good is a normal good. It takes
value y( p

1+α
, wi) at yi = 0 and reaches 0 if yi is high enough. The function on the right is

increasing and start at 0. Therefore, there is a unique intersection with the 45 degree line,
happening from above.

(3) Next, introduce loss aversion. Let us show that the utility function is strictly concave
despite the kink. The utility of the consumer with relative concerns can be written as
U(yi, yi) = u(w− pyi, ϕ(yi, yi)) where u is a strictly concave and smooth function. Note that
U is continuous at the kink, yi. To establish the concavity of U(yi, yi) as a function of yi we
first look at the marginal utility on the two sides of yi. The marginal utility evaluated on the
left, i.e. yi < yi is

lim
yi→yi,yi<yi

∂U

∂yi
= −pu1(w − pyi, yi) + (1 + α)u2(w − pyi, yi)
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while on the right

lim
yi→yi,yi>yi

∂U

∂yi
= −pu1(w − pyi, yi) + (1 + β)u2(w − pyi, yi)

As α > β we obtain

lim
yi→yi,yi<yi

∂U

∂yi
(yi, yi) > lim

yi→yi,yi>yi

∂U

∂yi
(yi, yi)

which is consistent with concavity.
Next we prove that U is strictly concave before and after the kink. Before the kink, for

instance, we have
∂2U

∂y2
i

= p2u11 + (1 + α)2 u22 − 2p (1 + α)u12

and ∂2U
∂y2i

< 0 if ∣∣p2u11 + (1 + α)2 u22

∣∣ > 2p (1 + α) |u12|

Since
(
p2u11 − (1 + α)2 u22

)2
> 0 we obtain

p4u2
11 + (1 + α)4 u2

22 + 2p2 (1 + α)2 u11u22 > 4p2 (1 + α)2 u11u22

As u is strictly concave, we also know that u11u22 > u2
12, leading to

p4u2
11 + (1 + α)4 u2

22 + 2p2 (1 + α)2 u11u22 > 4p2 (1 + α)2 u2
12

which can be rearranged into(
p2u11 + (1 + α)2 u22

)2
> (2p (1 + α)u12)2

and hence ∣∣p2u11 + (1 + α)2 u22

∣∣ > 2p (1 + α) |u12|

This establishes strict concavity of U , and hence uniqueness of the best response, which
solves the problem maxU(yi, yi) for yi ∈ [0, wi

p
].

(4) Next, let us show that the intersection of f(yi, α) with the 45 degree line increases with
α. Let U(y, yi, α) = y(w − py, (1 + α)y − αyi). We know that U(y, yi, α) and U(y, yi, β) are
both concave in y. They both admit a global maximum, denoted yα and yβ. We also know
that they intersect at y = yi

U(yi, yi, α) = U(yi, yi, β)

There are four possible cases. Suppose that yα < yi < yβ or yα > yi > yβ. In the case
yα < yβ at y = yi we should have

lim
yi→yi,yi<yi

U ′(yi, yi, α) < lim
yi→yi,yi>yi

U ′(yi, yi, β)

33



while in the case yα > yβ at y = yi we should have

lim
yi→yi,yi<yi

U ′(yi, yi, α) > lim
yi→yi,yi>yi

U ′(yi, yi, β)

However, as shown above the last inequality is the only one holding. Therefore, configuration
yα < yi < yβ is not possible while is yα > yi > yβ is possible and delivers the maximal utility
at the kink y = yi. The third case is yα < yi and yβ < yi. Here the maximum is at yα.
Finally the last case is yα > yi and yβ > yi in which case the maximum is at yβ. This implies
that the unique intersection of f(yi, α) with the 45 degree line increases with α.

(5) Denote by y1
i the intersection of f(yi, β) with the 45 degree line and by y2

i the intersection
of f(yi, α) with the 45 degree line, such that 0 < y1

i < y2
i . When yi < y1

i , the agent is in the
domain of status gains and f(yi) = f(yi, β). When yi > y2

i , the agent is in the domain of
status losses and f(yi) = f(yi, α). When y1

i ≤ yi ≤ y2
i , the best response for β cannot be the

best response (since below the 45 degree line) and similarly the best response for α cannot
be the best response (since above the 45 degree line). Since the utility admits a maximum,
the agent must be precisely at the kink, i.e., f(yi) = yi.

And hence every agent has a conformist range [y1
i , y

2
i ]. Since the status good is a normal

good, by equation (10), both extremities increase with wi. The set of conformist Nash
equilibria of the form (y, y, ..., y) is equal to the intersection of the individual conformist
ranges. This intersection is not empty when the difference between highest and lowest income
is not too high.

QED
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